# Why are humans so bad with probability?

Apr 29 JDN 2458238

In previous posts on deviations from expected utility and cumulative prospect theory, I’ve detailed some of the myriad ways in which human beings deviate from optimal rational behavior when it comes to probability.

This post is going to be a bit different: Yes, we behave irrationally when it comes to probability. Why?

Why aren’t we optimal expected utility maximizers?
This question is not as simple as it sounds. Some of the ways that human beings deviate from neoclassical behavior are simply because neoclassical theory requires levels of knowledge and intelligence far beyond what human beings are capable of; basically anything requiring “perfect information” qualifies, as does any game theory prediction that involves solving extensive-form games with infinite strategy spaces by backward induction. (Don’t feel bad if you have no idea what that means; that’s kind of my point. Solving infinite extensive-form games by backward induction is an unsolved problem in game theory; just this past week I saw a new paper presented that offered a partial potential solutionand yet we expect people to do it optimally every time?)

I’m also not going to include questions of fundamental uncertainty, like “Will Apple stock rise or fall tomorrow?” or “Will the US go to war with North Korea in the next ten years?” where it isn’t even clear how we would assign a probability. (Though I will get back to them, for reasons that will become clear.)

No, let’s just look at the absolute simplest cases, where the probabilities are all well-defined and completely transparent: Lotteries and casino games. Why are we so bad at that?

Lotteries are not a computationally complex problem. You figure out how much the prize is worth to you, multiply it by the probability of winning—which is clearly spelled out for you—and compare that to how much the ticket price is worth to you. The most challenging part lies in specifying your marginal utility of wealth—the “how much it’s worth to you” part—but that’s something you basically had to do anyway, to make any kind of trade-offs on how to spend your time and money. Maybe you didn’t need to compute it quite so precisely over that particular range of parameters, but you need at least some idea how much \$1 versus \$10,000 is worth to you in order to get by in a market economy.

Casino games are a bit more complicated, but not much, and most of the work has been done for you; you can look on the Internet and find tables of probability calculations for poker, blackjack, roulette, craps and more. Memorizing all those probabilities might take some doing, but human memory is astonishingly capacious, and part of being an expert card player, especially in blackjack, seems to involve memorizing a lot of those probabilities.

Furthermore, by any plausible expected utility calculation, lotteries and casino games are a bad deal. Unless you’re an expert poker player or blackjack card-counter, your expected income from playing at a casino is always negative—and the casino set it up that way on purpose.

Why, then, can lotteries and casinos stay in business? Why are we so bad at such a simple problem?

Clearly we are using some sort of heuristic judgment in order to save computing power, and the people who make lotteries and casinos have designed formal models that can exploit those heuristics to pump money from us. (Shame on them, really; I don’t fully understand why this sort of thing is legal.)

In another previous post I proposed what I call “categorical prospect theory”, which I think is a decently accurate description of the heuristics people use when assessing probability (though I’ve not yet had the chance to test it experimentally).

But why use this particular heuristic? Indeed, why use a heuristic at all for such a simple problem?

I think it’s helpful to keep in mind that these simple problems are weird; they are absolutely not the sort of thing a tribe of hunter-gatherers is likely to encounter on the savannah. It doesn’t make sense for our brains to be optimized to solve poker or roulette.

The sort of problems that our ancestors encountered—indeed, the sort of problems that we encounter, most of the time—were not problems of calculable probability risk; they were problems of fundamental uncertainty. And they were frequently matters of life or death (which is why we’d expect them to be highly evolutionarily optimized): “Was that sound a lion, or just the wind?” “Is this mushroom safe to eat?” “Is that meat spoiled?”

In fact, many of the uncertainties most important to our ancestors are still important today: “Will these new strangers be friendly, or dangerous?” “Is that person attracted to me, or am I just projecting my own feelings?” “Can I trust you to keep your promise?” These sorts of social uncertainties are even deeper; it’s not clear that any finite being could ever totally resolve its uncertainty surrounding the behavior of other beings with the same level of intelligence, as the cognitive arms race continues indefinitely. The better I understand you, the better you understand me—and if you’re trying to deceive me, as I get better at detecting deception, you’ll get better at deceiving.

Personally, I think that it was precisely this sort of feedback loop that resulting in human beings getting such ridiculously huge brains in the first place. Chimpanzees are pretty good at dealing with the natural environment, maybe even better than we are; but even young children can outsmart them in social tasks any day. And once you start evolving for social cognition, it’s very hard to stop; basically you need to be constrained by something very fundamental, like, say, maximum caloric intake or the shape of the birth canal. Where chimpanzees look like their brains were what we call an “interior solution”, where evolution optimized toward a particular balance between cost and benefit, human brains look more like a “corner solution”, where the evolutionary pressure was entirely in one direction until we hit up against a hard constraint. That’s exactly what one would expect to happen if we were caught in a cognitive arms race.

What sort of heuristic makes sense for dealing with fundamental uncertainty—as opposed to precisely calculable probability? Well, you don’t want to compute a utility function and multiply by it, because that adds all sorts of extra computation and you have no idea what probability to assign. But you’ve got to do something like that in some sense, because that really is the optimal way to respond.

So here’s a heuristic you might try: Separate events into some broad categories based on how frequently they seem to occur, and what sort of response would be necessary.

Some things, like the sun rising each morning, seem to always happen. So you should act as if those things are going to happen pretty much always, because they do happen… pretty much always.

Other things, like rain, seem to happen frequently but not always. So you should look for signs that those things might happen, and prepare for them when the signs point in that direction.

Still other things, like being attacked by lions, happen very rarely, but are a really big deal when they do. You can’t go around expecting those to happen all the time, that would be crazy; but you need to be vigilant, and if you see any sign that they might be happening, even if you’re pretty sure they’re not, you may need to respond as if they were actually happening, just in case. The cost of a false positive is much lower than the cost of a false negative.

And still other things, like people sprouting wings and flying, never seem to happen. So you should act as if those things are never going to happen, and you don’t have to worry about them.

This heuristic is quite simple to apply once set up: It can simply slot in memories of when things did and didn’t happen in order to decide which category they go in—i.e. availability heuristic. If you can remember a lot of examples of “almost never”, maybe you should move it to “unlikely” instead. If you get a really big number of examples, you might even want to move it all the way to “likely”.

Another large advantage of this heuristic is that by combining utility and probability into one metric—we might call it “importance”, though Bayesian econometricians might complain about that—we can save on memory space and computing power. I don’t need to separately compute a utility and a probability; I just need to figure out how much effort I should put into dealing with this situation. A high probability of a small cost and a low probability of a large cost may be equally worth my time.

How might these heuristics go wrong? Well, if your environment changes sufficiently, the probabilities could shift and what seemed certain no longer is. For most of human history, “people walking on the Moon” would seem about as plausible as sprouting wings and flying away, and yet it has happened. Being attacked by lions is now exceedingly rare except in very specific places, but we still harbor a certain awe and fear before lions. And of course availability heuristic can be greatly distorted by mass media, which makes people feel like terrorist attacks and nuclear meltdowns are common and deaths by car accidents and influenza are rare—when exactly the opposite is true.

How many categories should you set, and what frequencies should they be associated with? This part I’m still struggling with, and it’s an important piece of the puzzle I will need before I can take this theory to experiment. There is probably a trade-off between more categories giving you more precision in tailoring your optimal behavior, but costing more cognitive resources to maintain. Is the optimal number 3? 4? 7? 10? I really don’t know. Even I could specify the number of categories, I’d still need to figure out precisely what categories to assign.