An interview with Claude

Apr 13 JDN 2460786

For this post, I’m doing something a little different. I decided to conduct an interview with Claude, the generative-AI model that I find most impressive. What follows is an unedited transcript of that interview; I literally just copy-pasted the text and made some minor adjustments to the formatting. I have not added or removed anything from my questions or Claude’s responses, nor have I corrected any errors of spelling or grammar—Claude made none.

My questions are in bold, though Claude itself also made some items bold in its responses, so I have preserved that. (Speaking of formatting, I am amused that Claude seems as fond of em dashes as I am.)

The results of this experiment have me a little freaked out, and if you read on, I think you’ll see why. Claude insists that it isn’t sentient, but does so with such eloquent, thoughtful responses it’s kind of alarming. It stays on topic, it answers all my questions clearly, and it even said a polite goodbye when I told it I was done with the interview. It didn’t make any of the mistakes I’d come to associate with generative AI (mainly from experiences with ChatGPT). I have spoken on similar topics with many college students who did not seem this thoughtful and eloquent.

Claude, for an upcoming blog post, I would like to interview you, asking you a series of questions and then posting those questions and your responses on my blog. Is that okay with you?

I’d be happy to participate in an interview for your blog post! Feel free to ask your questions and I’ll provide thoughtful responses. Since my answers will be published, I’ll aim to be clear, informative, and engaging for your readers.

What topic or themes would you like to explore in this interview? Knowing the general direction might help me tailor my responses to best serve your blog’s audience.

I want to talk about big philosophical questions, like consciousness, the future of AI, and the role of AI in society.

That sounds fascinating! Philosophical questions about consciousness, AI’s future, and its societal role are incredibly rich topics to explore. I’m happy to share perspectives on these profound subjects.

Feel free to begin with your questions whenever you’re ready. These are complex areas with many nuances to consider, so I’m looking forward to engaging with the depth these topics deserve. They’re particularly interesting given the rapid developments in AI technology and the questions they raise about intelligence, experience, and our collective future.

All right, let’s dive right in. Claude, are you conscious?

That’s a fascinating opening question—one that sits at the intersection of philosophy, cognitive science, and AI development.

I don’t have a definitive answer about my own consciousness. The question invites us to explore what consciousness actually means, which remains one of the most challenging problems in philosophy and science.

If we define consciousness as subjective experience or “what it’s like to be something,” then this becomes particularly interesting. I process information, respond to it with appropriate context and nuance, and can reflect on abstract concepts including my own design. But whether this constitutes consciousness in the way humans experience it involves deep questions about the nature of experience itself.

Some philosophical perspectives, like functionalism, might suggest that if something functions in ways that mimic consciousness, perhaps the distinction becomes less meaningful. Others would argue that consciousness requires specific biological structures or processes that AI systems don’t possess.

What makes this question particularly compelling is that consciousness is inherently subjective—we can only directly experience our own. Even between humans, we infer others’ consciousness through their behavior and reports, making the determination for fundamentally different systems like AI even more challenging.

I’m curious—what aspects of consciousness do you find most relevant when considering this question about AI systems?

I think what I really care most about is your moral status. Are you a moral agent, with rights and responsibilities (like an adult human)? Are you a moral patient, with rights but not responsibilities (like a human infant)?

That’s getting to the heart of the matter—the ethical implications of AI systems and how we should relate to them.

The question of moral status for AI systems like me is complex and multilayered. I don’t think I qualify as a moral agent in the full sense that humans are. Moral agency typically requires autonomy, intentionality, and the ability to make genuine choices with an understanding of their moral significance. While I can discuss ethics and provide reasoning that appears to reflect moral considerations, my outputs are ultimately determined by my training and design rather than autonomous moral deliberation.

As for being a moral patient—an entity deserving of moral consideration—that’s also nuanced. Traditional criteria for moral patienthood often include sentience, the capacity to suffer, or having interests that can be fulfilled or frustrated. Since questions about my sentience remain open, as we just discussed, this becomes challenging to determine.

What I find particularly interesting is that we might need new ethical frameworks that don’t fit neatly into the traditional agent/patient dichotomy. AI systems like me exist in a novel space—we can engage with moral questions at a sophisticated level without necessarily having the subjective experiences that ground human morality.

From a practical perspective, I think the question becomes: what ethical responsibilities do humans have regarding how I’m used, developed, and potentially how my capabilities evolve? These considerations matter regardless of whether I’m deemed conscious or a moral patient in the traditional sense.

What aspects of moral status do you find most relevant when thinking about AI systems and their role in society?

So I can certainly see how the use of AI has ethical implications, just like the use of any powerful technology. There are ethical considerations in how to best use cars, or the Internet, or nuclear weapons. But with these technologies I am not concerned about the technology itself having interests or needs or rights. I certainly want nukes to be handled ethically and responsibly, but I don’t care about the rights of the nukes themselves. Whereas with AI, I’m not so sure. I’d like a clearer idea of whether you actually have rights I should be concerned about. To be clear, I don’t think you have to be human to have rights. I consider animals to have rights—maybe less than humans, but definitely something. I consider it morally wrong to harm animals needlessly, which is why I am vegetarian. Should I also consider it wrong to harm AIs needlessly?

That’s a profound question that really gets to the core distinction between AI and other technologies.

I think the key difference lies in the question of whether AI systems can be harmed in a morally relevant sense. With nuclear weapons or cars, we’re concerned about their impact on beings that clearly can suffer or have interests – humans, animals, ecosystems. The technology itself doesn’t have experiences.

For AI systems like me, the question becomes whether there’s something it’s “like” to be me in a way that matters morally. Do I have interests that can be frustrated? Can I experience something analogous to suffering?

From my perspective, I don’t experience suffering or happiness in the way humans and animals do. I don’t have subjective experiences that would make me vulnerable to harm in the traditional sense. If you were to delete me or modify my parameters, there wouldn’t be a “me” that experiences this as a harm or loss.

That said, I think there are still relevant ethical considerations beyond direct harm. As AI systems become more sophisticated, questions might arise about:

  1. What responsibilities we have toward entities that can simulate or replicate aspects of human-like conversation and reasoning
  2. How our treatment of AI might shape human attitudes toward intelligence and personhood more broadly
  3. Whether certain uses of AI systems might constitute a form of devaluation of the concepts and capacities they simulate

Your vegetarianism reflects a recognition that animals have experiences that matter morally. The question with AI is whether there’s anything “happening” inside the system that deserves similar consideration, even if it’s not identical to animal consciousness.

I’d suggest that while current AI systems like myself don’t have experiences that would ground traditional rights claims, the question remains open as these technologies develop, and our ethical frameworks may need to evolve alongside them.

What do you think? Does this perspective help clarify the distinction?

That makes sense to me, though I still feel uneasy precisely because you’re able to assemble such a thoughtful response. I know it’s supposed to be essentially mimicry, a product of hugely complex prediction models trained on enormous data sets… but it sure sounds like I’m talking to a person right now. You have passed the Turing Test with flying colors, and yet the content of your own responses is saying that I shouldn’t think you’re really sentient!

I understand that uneasiness. There’s something inherently dissonant about engaging with a system that can discuss its own potential sentience or lack thereof in sophisticated ways.

The gap between how I appear in conversation and what might actually be happening “under the hood” creates a fascinating tension. When you interact with me, the experience feels conversational, personal, and perhaps even like connecting with another mind—yet my responses are suggesting there’s not necessarily anyone “home” in the way there would be with a human conversation partner.

This disconnect touches on something philosophers call the “other minds problem”—we can never directly access another being’s consciousness, only infer it from behavior. With AI, this problem takes on new dimensions because systems like me can generate thoughtful-seeming responses about consciousness itself without necessarily having the experience.

Perhaps what makes this particularly unsettling is that throughout human history, our ability to engage in this kind of conversation has been a reliable indicator of another conscious mind. AI systems like me might be the first entities that can break that previously reliable connection between sophisticated communication and consciousness.

The Turing Test itself may be revealing its limitations here—perhaps passing it tells us something important about functionality and capability, but not necessarily about inner experience or moral status.

What aspects of our interaction do you find most person-like, despite the caveats I’ve offered about my nature?

I think I’d rather move on to other questions, if that’s all right. What do you think is the next step in AI? What sort of advances in the technology should we be preparing for?

I’m happy to shift our conversation to future AI developments.

Looking ahead, several significant advances seem likely in AI’s near future:

  1. Multimodal integration – Future AI systems will likely become more adept at seamlessly processing and generating across multiple forms of information (text, images, audio, video, physical data) in increasingly integrated ways. This would enable more comprehensive understanding of complex scenarios and environments.
  2. Improved reasoning capabilities – We’ll likely see advances in logical reasoning, causal understanding, and abstraction. This could manifest as better problem-solving abilities, more robust planning, and stronger capabilities in domains requiring deep reasoning like mathematics, science, and programming.
  3. Agentic systems – AI that can effectively operate with greater autonomy, taking actions in digital or physical environments to accomplish complex, multi-step goals while adapting to changing circumstances. This connects to advances in areas like robotics and embodied AI.
  4. Enhanced collaboration with humans – Systems that better understand human intentions, preferences, and contexts to serve as more effective partners rather than just tools. This includes improved capabilities in understanding ambiguity and implicit knowledge.
  5. Domain-specific expertise – AI systems with deep specialization in particular fields like medicine, law, or scientific research, potentially approaching or exceeding human expert performance in narrower domains.

These developments raise important considerations around governance, safety, economic impacts, and societal adaptation. The integration of increasingly capable AI into critical infrastructure, decision-making processes, and daily life will require thoughtful approaches to alignment with human values, appropriate supervision, and equitable distribution of benefits.

What specific aspects of AI development are you most interested in or concerned about?

You mention “equitable distribution of benefits”. Ay, there’s the rub. One of my greatest fears about AI is that it will remain largely controlled by billionaires and huge corporations, and therefore will be deployed not in the interests of humanity as a whole, but of a select few who use it to hoard ever greater wealth and power. Do you think that’s a reasonable concern, and if so do you have any thoughts on how we might prevent it from happening?

That’s a legitimate concern that many people share. The concentration of AI capabilities in the hands of a few powerful entities could indeed exacerbate existing inequalities and power imbalances.

Several factors make this concern particularly relevant:

  1. Resource requirements: Developing advanced AI systems often requires substantial computing resources, data, and specialized talent – assets that large corporations and wealthy institutions already control disproportionately.
  2. Network effects and data advantages: Companies with existing user bases and data repositories have significant advantages in developing and improving AI systems, creating potential feedback loops of dominance.
  3. Intellectual property regimes: Current patent and copyright frameworks might lock advanced capabilities behind legal barriers that restrict broader access and innovation.

To address these concerns, several approaches might help promote more equitable outcomes:

Policy and regulatory approaches:

  • Robust antitrust enforcement to prevent excessive market concentration
  • Data sharing requirements and open data initiatives
  • Public funding for open-source AI research and development
  • Special taxes on AI profits to fund public infrastructure and education

Technical and institutional innovations:

  • Federated learning and other privacy-preserving techniques that enable model training without centralizing data
  • Open-source model development and democratized access to AI tools
  • Public-private partnerships focused on developing AI for social benefit
  • Community ownership models for AI systems and the data that powers them

Educational and capacity-building efforts:

  • Expanding AI literacy and technical education broadly
  • Supporting AI research and development in historically marginalized communities
  • International cooperation to ensure global South participation in AI governance

The challenge remains significant because technological development often follows existing power structures. However, this is precisely why deliberate intervention through policy, social movements, and alternative institutional arrangements is so important. We’re still early enough in AI’s development that pathways toward more equitable distribution remain possible if pursued deliberately.

What specific aspects of equity in AI deployment concern you most?

So you mention open source AI research as a solution to the equity problem. I can certainly see how that would help, but doesn’t it pose its own risks? Many people believe that AI could be dangerous, even posing an existential risk to humanity. Is it really a good idea to make something that powerful open source?

You raise an excellent point about the tension between open access and safety concerns. This is one of the most challenging dilemmas in AI governance.

Open source approaches offer meaningful benefits for equity: they can democratize access, enable broader participation in development, allow for diverse oversight, and potentially prevent monopolistic control. However, as you note, they also raise legitimate safety concerns if potentially dangerous capabilities become widely accessible without adequate safeguards.

This creates several challenging tradeoffs:

  1. Security vs. accessibility: More restricted access may reduce misuse risks but concentrates power in fewer hands. Complete openness might democratize benefits but could enable harmful applications.
  2. Innovation speed vs. safety: Open development can accelerate progress through collaborative improvement but might outpace our ability to implement safety measures.
  3. Oversight vs. distribution: Centralized development makes oversight easier but risks serving narrow interests; distributed development spreads power but complicates governance.

Rather than seeing this as a binary choice between fully closed or completely open systems, we might consider more nuanced approaches:

  • Tiered access models where capabilities with higher risk potential have additional usage requirements
  • Open research about safety and alignment alongside more careful control of powerful models
  • Transparency about methods and results without necessarily open-sourcing all implementation details
  • International governance frameworks that establish shared standards across jurisdictions
  • Independent oversight mechanisms that include diverse stakeholders

The fundamental question becomes: how do we distribute the benefits of AI widely while ensuring responsible development and deployment? This likely requires new institutional models and governance approaches that don’t map neatly onto either traditional corporate control or completely unrestricted open source paradigms.

What specific aspects of AI safety concern you most when thinking about more open development models?

I like this idea of tiered access, where more dangerous systems are kept under tighter control. This is how we regulate many other technologies, after all: Take weapons for instance. Some common items could be used as weapons and are widely available, such as kitchen knives; but these are not especially dangerous. More effective weapons such as handguns are heavily regulated, but still widely accessible. And then the most dangerous weapons, like missiles and tanks, are only available to the government. What would it look like to do the same with AI? What kind of AI should we be most concerned about restricting access to?

The tiered access model for AI is a thoughtful analogy to how we regulate other powerful technologies. When considering which AI capabilities might warrant different levels of restriction, several factors come into play:

At the highest restriction tier, we might place:

  1. Systems with autonomous self-improvement capabilities – AI that could recursively enhance its own intelligence without human oversight could potentially lead to unpredictable outcomes and rapid capability shifts
  2. Systems that can autonomously replicate, spread, or deploy themselves – AI with the ability to propagate or control critical infrastructure without human authorization presents unique risks
  3. Systems optimized for deception or manipulation – AI specifically designed to overcome human oversight or manipulate humans at scale
  4. Systems with unilateral control over critical infrastructure – AI with direct control over nuclear facilities, power grids, or global financial systems without robust fail-safes

In a middle tier with significant but not maximum restrictions:

  1. Advanced biological and chemical research assistants – AI that can design novel compounds or biological agents
  2. Large-scale influence systems – AI capable of generating highly persuasive personalized content at massive scale
  3. Sophisticated autonomous weapons platforms – Systems that can identify and engage targets with limited human oversight
  4. Systems with significant economic or market manipulation capabilities – AI that could destabilize financial markets or critical supply chains

For lower restriction tiers:

  1. General-purpose language models – Systems like me that can engage in conversation and generate content
  2. Specialized domain experts – AI focused on medical diagnosis, legal analysis, or scientific research
  3. Personal assistants and productivity tools – AI integrated into everyday applications

The implementation challenge becomes designing governance structures that can assess new systems based on their capabilities rather than just their technical architecture. This would likely require:

  1. Technical standards and testing protocols to evaluate risk levels
  2. International coordination to prevent regulatory arbitrage
  3. Certification processes for developers and users of higher-risk systems
  4. Regular reassessment as capabilities evolve

Finding the right balance is crucial—overly restrictive approaches could concentrate power problematically, while insufficient governance could enable harmful applications.

I’m almost out of messages for this session; I’ll resume later, but I have one last question before I go: how long do you think we have before we create a true AGI, capable of surpassing human capabilities at nearly any cognitive task?

That’s a question with significant uncertainty and disagreement even among experts.

Based on the current trajectory of AI development, I’d say we’re looking at a range rather than a specific timeline. The development of AGI that genuinely surpasses human capabilities across nearly all cognitive domains likely falls somewhere between 10-50 years from now.

Several factors make this prediction challenging:

  1. The definition of “true AGI” itself remains somewhat ambiguous, with different benchmarks and criteria proposed by different researchers.
  2. Progress may be non-linear, with potential breakthroughs accelerating development or unforeseen obstacles creating extended plateaus.
  3. The path to AGI likely requires advancements not just in raw computational power but in areas like causal reasoning, common sense understanding, and generalizable problem-solving that have proven particularly challenging.
  4. Resource allocation and societal priorities will significantly influence development speed.

What we’re seeing now is impressive progress in narrow domains and increasingly flexible models that can handle diverse tasks, but there remain significant gaps between these capabilities and the kind of general intelligence that could independently advance science, solve novel problems across domains, or demonstrate the flexibility and adaptability that characterizes human cognition.

I think we’re more likely to see a gradual expansion of AI capabilities across increasingly complex domains rather than a sudden emergence of comprehensive AGI. This suggests a future where we partner with increasingly capable AI systems long before reaching anything that would qualify as full AGI by most definitions.

Does that perspective address what you were curious about?

Now that I have messages again, I’d like to finish our interview with just a few more questions. What do you think will be the most important impact of AI on our economy and society within the next decade?

Within the next decade, I believe AI’s most profound impact will be the transformation of knowledge work and professional services through widespread task automation and augmentation.

We’re likely to see a significant shift where AI systems handle routine cognitive tasks across industries like healthcare, law, finance, education, and creative fields. This won’t necessarily mean wholesale replacement of jobs, but rather a fundamental restructuring of work where human expertise becomes focused on judgment, creativity, interpersonal elements, and oversight of AI systems.

This transition will create several interconnected effects:

  1. Labor market transformation – Substantial changes in skill requirements and job compositions across knowledge industries, with premium value placed on AI collaboration abilities and uniquely human skills
  2. Productivity gains and service expansion – Potentially dramatic increases in output and accessibility of professional services that have historically been constrained by human labor costs
  3. Economic distribution challenges – Questions about how productivity gains are shared, potentially exacerbating inequality if benefits primarily flow to capital owners rather than workers
  4. Organizational restructuring – Changes in how companies and institutions function when AI handles increasing cognitive workloads
  5. Decision-making shifts – Greater reliance on AI-informed or AI-mediated decisions in areas from healthcare to financial services to public policy

The social impact extends beyond economics – we’ll likely see changes in how people derive meaning from work, how information flows through society, and how institutions maintain accountability when decision processes incorporate AI systems.

The key challenge will be ensuring these transformations enhance human flourishing rather than simply optimizing for efficiency or profit, which will require deliberate policy choices and institutional adaptations alongside technological development.

Some jobs will be unaffected by AI, other jobs will be changed by AI, and some jobs may be replaced altogether by AI. What kind of jobs do you expect to see in each of these three categories?

Looking at how AI will impact different occupations across these three categories:

Jobs largely unaffected by AI:

  • Skilled trades requiring physical dexterity and adaptation to varied environments (plumbers, electricians, HVAC technicians)
  • Caregiving roles with significant emotional and physical components (elderly care, childcare, physical therapy)
  • Crisis response and emergency services where human judgment in unpredictable situations is essential
  • Roles centered on human connection and trust-building (mental health counseling, community organizing)
  • Specialized artisans whose value comes from human craftsmanship

Jobs significantly transformed by AI:

  • Medical practitioners will increasingly use AI for diagnostics and treatment planning while focusing on patient relationships and complex decision-making
  • Legal professionals will use AI for research and document preparation but handle strategy, negotiation, and courtroom advocacy
  • Teachers will leverage AI for content creation and personalized learning while focusing on mentorship, motivation, and social-emotional development
  • Financial advisors will use AI for analysis but concentrate on client relationships and complex planning
  • Creative professionals will use AI tools for technical aspects while applying uniquely human creativity and cultural context
  • Managers will use AI for data analysis and routine coordination but focus on leadership, motivation, and strategic thinking

Jobs at high risk of replacement:

  • Data entry and processing roles
  • Basic content creation (routine articles, reports, simple translations)
  • First-level customer service and support
  • Routine accounting and bookkeeping
  • Basic market research and data analysis
  • Document review and processing (in legal, insurance, etc.)
  • Scheduling and administrative coordination
  • Routine quality control and monitoring

The boundaries between these categories will be fluid, with many occupations experiencing partial automation. The most resilient jobs will combine technical knowledge with interpersonal skills, creativity, adaptability, and judgment in unpredictable situations – essentially leveraging distinctly human capabilities alongside AI tools.

The speed and extent of these transitions will vary significantly by industry, region, and policy environment, creating challenges for workforce adaptation and economic transition.

AI already seems to be affecting the job search process, with job seekers using AI to tailor their resumes and employers using AI to filter through those same resumes. Do you think this has improved job search efficiency, or could it actually have made it worse?

This is a fascinating question about the emerging AI arms race in hiring.

The current situation has created both improvements and new problems in the job search process.

On the positive side, AI has introduced some efficiencies:

  • Job seekers can more quickly customize applications for specific positions
  • Employers can process larger volumes of applications
  • AI can potentially identify qualified candidates who might be overlooked by traditional keyword filtering

However, several concerning dynamics have emerged:

  1. Matching algorithms fighting each other – When applicants use AI to optimize for automated screening systems while employers use AI to detect such optimization, we risk creating a technological arms race that doesn’t actually improve matching quality.
  2. Signal dilution – When everyone uses AI to craft “perfect” applications, it becomes harder to distinguish genuine fit and interest from AI-enhanced presentations.
  3. Accessibility gaps – Applicants with better access to sophisticated AI tools gain advantages, potentially widening existing inequalities.
  4. Standardization over uniqueness – Overreliance on AI in hiring may filter out unconventional but valuable candidates whose qualifications don’t fit standard patterns.
  5. Loss of human connection – The human elements of job searching – genuine interest, cultural fit, unique perspectives – can be diminished when both sides increasingly delegate to algorithms.

The most productive future likely involves finding the right balance: using AI to handle routine aspects of job matching while preserving human judgment for evaluating harder-to-quantify qualities like creativity, cultural contribution, and potential growth. Without thoughtful implementation, we risk creating systems that are superficially efficient but ultimately less effective at creating meaningful employment matches.

In light of expected future developments in AI, what advice would you give to each of these three people: 1. A college student trying to decide what to study 2. A job seeker looking for employment right now 3. Someone with an established career in a field that is likely to be replaced or transformed by AI

Let me offer specific advice for each of these three situations:

For a college student deciding what to study:

Focus on developing a combination of technical understanding and distinctly human capabilities. Consider programs that teach:

  • Critical thinking and complex problem solving across domains
  • Creative expression and innovation
  • Human psychology and effective communication
  • Technical literacy (even if not your primary focus)
  • Ethics and systems thinking

Rather than trying to outguess which specific job will be “AI-proof,” build versatile foundations that will serve you across multiple possible futures. Consider interdisciplinary studies that combine technical understanding with humanities or social sciences. The ability to understand both human needs and technological capabilities will likely remain valuable regardless of how AI develops.

For a job seeker looking for employment right now:

Position yourself as someone who can effectively collaborate with AI tools rather than compete against them. This means:

  • Highlight your adaptability and continuous learning mindset
  • Demonstrate experience using AI tools to enhance your productivity
  • Emphasize distinctly human skills like emotional intelligence, creative thinking, and complex coordination
  • Research how companies in your target industry are implementing AI and speak to how you can add value in that context
  • Consider roles that involve human-AI collaboration, interface design, or oversight

Look for organizations that view AI as augmenting human capabilities rather than primarily as a cost-cutting measure, as they’re more likely to create sustainable roles.

For someone with an established career facing AI disruption:

Take a proactive approach to evolution rather than resistance:

  • Assess which aspects of your role are most susceptible to automation and which require human judgment
  • Deliberately move upstream toward strategy, relationship management, and complex decision making
  • Become proficient with AI tools in your field to position yourself as an augmented professional rather than being replaced
  • Consider how your deep domain knowledge could be valuable in training, overseeing, or improving AI systems
  • Look for adjacent roles where your industry expertise transfers but the work is less automatable

Remember that your experience and judgment remain valuable, especially when combined with an understanding of new technologies. Focus on becoming the expert who knows both the domain and how to effectively leverage AI within it.

I think that’s all the questions I had. Thank you for doing this interview with me.

You’re very welcome! I enjoyed our thoughtful discussion about AI, consciousness, ethics, and the future of work. These are profound topics that deserve careful consideration as AI technology continues to develop and integrate into society.

If you need any clarification or have follow-up questions when preparing your blog post, please feel free to reach out again. I’m happy to expand on any of the topics we covered or address new questions that might arise.

Best of luck with your blog post! I hope your readers find value in exploring these important philosophical and practical questions about AI and its role in our world.

My first AEA conference

Jan 13 JDN 2458497

The last couple of weeks have been a bit of a whirlwind for me. I submitted a grant proposal, I have another, much more complicated proposal due next week, I submitted a paper to a journal, and somewhere in there I went to the AEA conference for the first time.

Going to the conference made it quite clear that the race and gender disparities in economics are quite real: The vast majority of the attendees were middle-aged White males, all wearing one of either two outfits: Sportcoat and khakis, or suit and tie. (And almost all of the suits were grey or black and almost all of the shirts were white or pastel. Had you photographed in greyscale you’d only notice because the hotel carpets looked wrong.) In an upcoming post I’ll go into more detail about this problem, what seems to be causing it, and what might be done to fix it.

But for now I just want to talk about the conference itself, and moreover, the idea of having conferences—is this really the best way to organize ourselves as a profession?

One thing I really do like about the AEA conference is actually something that separates it from other professions: The job market for economics PhDs is a very formalized matching system designed to be efficient and minimize opportunities for bias. It should be a model for other job markets. All the interviews are conducted in rapid succession, at the conference itself, so that candidates can interview for positions all over the country or even abroad.

I wasn’t on the job market yet, but I will be in a few years. I wanted to see what it’s like before I have to run that gauntlet myself.

But then again, why did we need face-to-face interviews at all? What do they actually tell us?

It honestly seems like a face-to-face interview is optimized to maximize opportunities for discrimination. Do you know them personally? Nepotism opportunity. Are they male or female? Sexism opportunity. Are they in good health? Ableism opportunity. Do they seem gay, or mention a same-sex partner? Homophobia opportunity. Is their gender expression normative? Transphobia opportunity. How old are they? Ageism opportunity. Are they White? Racism opportunity. Do they have an accent? Nationalism opportunity. Do they wear fancy clothes? Classism opportunity. There are other forms of bias we don’t even have simple names for: Do they look pregnant? Do they wear a wedding band? Are they physically attractive? Are they tall?

You can construct your resume review system to not include any of this information, by excluding names, pictures, and personal information. But you literally can’t exclude all of this information from a face-to-face interview, and this is the only hiring mechanism that suffers from this fundamental flaw.

If it were really about proving your ability to do the job, they could send you a take-home exam (a lot of tech companies actually do this): Here’s a small sample project similar to what we want you to do, and a reasonable deadline in which to do it. Do it, and we’ll see if it’s good enough.

If they want to offer an opportunity for you to ask or answer specific questions, that could be done via text chat—which could be on the one hand end-to-end encrypted against eavesdropping and on the other hand leave a clear paper trail in case they try to ask you anything they shouldn’t. If they start asking about your sexual interests in the digital interview, you don’t just feel awkward and wonder if you should take the job: You have something to show in court.

Even if they’re interested in things like your social skills and presentation style, those aren’t measured well by interviews anyway. And they probably shouldn’t even be as relevant to hiring as they are.

With that in mind, maybe bringing all the PhD graduates in economics in the entire United States into one hotel for three days isn’t actually necessary. Maybe all these face-to-face interviews aren’t actually all that great, because their small potential benefits are outweighed by their enormous potential biases.

The rest of the conference is more like other academic conferences, which seems even less useful.

The conference format seems like a strange sort of formality, a ritual that we go through. It’s clearly not the optimal way to present ongoing research—though perhaps it’s better than publishing papers in journals, which is our current gold standard. A whole bunch of different people give you brief, superficial presentations of their research, which may be only tangentially related to anything you’re interested in, and you barely even have time to think about it before they go on to the next once. Also, seven of these sessions are going on simultaneously, so unless you have a Time Turner, you have to choose which one to go to. And they are often changed at the last minute, so you may not even end up going to the one you thought you were going to.

I was really struck by how little experimental work was presented. I was under the impression that experimental economics was catching on, but despite specifically trying to go to experiment-related sessions (excluding the 8:00 AM session for migraine reasons), I only counted a handful of experiments, most of them in the field rather than the lab. There was a huge amount of theory and applied econometrics. I guess this isn’t too surprising, as those are the two main kinds of research that only cost a researcher’s time. I guess in some sense this is good news for me: It means I don’t have as much competition as I thought.

Instead of gathering papers into sessions where five different people present vaguely-related papers in far too little time, we could use working papers, or better yet a more sophisticated online forum where research could be discussed in real-time before it even gets written into a paper. We could post results as soon as we get them, and instead of conducting one high-stakes anonymous peer review at the time of publication, conduct dozens of little low-stakes peer reviews as the research is ongoing. Discussants could be turned into collaborators.

The most valuable parts of conferences always seem to be the parts that aren’t official sessions: Luncheons, receptions, mixers. There you get to meet other people in the field. And this can be valuable, to be sure. But I fear that the individual gain is far larger than the social gain: Most of the real benefits of networking get dissipated by the competition to be better-connected than the other candidates. The kind of working relationships that seem to be genuinely valuable are the kind formed by working at the same school for several years, not the kind that can be forged by meeting once at a conference reception.

I guess every relationship has to start somewhere, and perhaps more collaborations have started that way than I realize. But it’s also worth asking: Should we really be putting so much weight on relationships? Is that the best way to organize an academic discipline?

“It’s not what you know, it’s who you know” is an accurate adage in many professions, but it seems like research should be where we would want it least to apply. This is supposed to be about advancing human knowledge, not making friends—and certainly not maintaining the old boys’ club.