The difference between price, cost, and value

JDN 2457559

This topic has been on the voting list for my Patreons for several months, but it never quite seems to win the vote. Well, this time it did. I’m glad, because I was tempted to do it anyway.

“Price”, “cost”, and “value”; the words are often used more or less interchangeably, not only by regular people but even by economists. I’ve read papers that talked about “rising labor costs” when what they clearly meant was rising wages—rising labor prices. I’ve read papers that tried to assess the projected “cost” of climate change by using the prices of different commodity futures. And hardly a day goes buy that I don’t see a TV commercial listing one (purely theoretical) price, cutting it in half (to the actual price), and saying they’re now giving you “more value”.

As I’ll get to, there are reasons to think they would be approximately the same for some purposes. Indeed, they would be equal, at the margin, in a perfectly efficient market—that may be why so many economists use them this way, because they implicitly or explicitly assume efficient markets. But they are fundamentally different concepts, and it’s dangerous to equate them casually.

Price

Price is exactly what you think it is: The number of dollars you must pay to purchase something. Most of the time when we talk about “cost” or “value” and then give a dollar figure, we’re actually talking about some notion of price.

Generally we speak in terms of nominal prices, which are the usual concept of prices in actual dollars paid, but sometimes we do also speak in terms of real prices, which are relative prices of different things once you’ve adjusted for overall inflation. “Inflation-adjusted price” can be a somewhat counter-intuitive concept; if a good’s (nominal) price rises, but by less than most other prices have risen, its real price has actually fallen.

You also need to be careful about just what price you’re looking at. When we look at labor prices, for example, we need to consider not only cash wages, but also fringe benefits and other compensation such as stock options. But other than that, prices are fairly straightforward.

Cost

Cost is probably not at all what you think it is. The real cost of something has nothing to do with money; saying that a candy bar “costs $2” or a computer “costs $2,000” is at best a somewhat sloppy shorthand and at worst a fundamental distortion of what cost is and why it matters. No, those are prices. The cost of a candy bar is the toil of children in cocoa farms in Cote d’Ivoire. The cost of a computer is the ecological damage and displaced indigenous people caused by coltan mining in Congo.

The cost of something is the harm that it does to human well-being (or for that matter to the well-being of any sentient being). It is not measured in money but in “the sweat of our laborers, the genius of our scientists, the hopes of our children” (to quote Eisenhower, who understood real cost better than most economists). There is also opportunity cost, the real cost we pay not by what we did, but by what we didn’t do—what we could have done instead.

This is important precisely because while costs should always be reduced when possible, prices can in fact be too low—and indeed, artificially low prices of goods due to externalities are probably the leading reason why humanity bears so many excess real costs. If the price of that chocolate bar accurately reflected the suffering of those African children (perhaps by—Gasp! Paying them a fair wage?), and the price of that computer accurately reflected the ecological damage of those coltan mines (a carbon tax, at least?), you might not want to buy them anymore; in which case, you should not have bought them. In fact, as I’ll get to once I discuss value, there is reason to think that even if you would buy them at a price that accurately reflected the dollar value of the real cost to their producers, we would still buy more than we should.

There is a point at which we should still buy things even though people get hurt making them; if you deny this, stop buying literally anything ever again. We don’t like to think about it, but any product we buy did cause some person, in some place, some degree of discomfort or unpleasantness in production. And many quite useful products will in fact cause death to a nonzero number of human beings.

For some products this is only barely true—it’s hard to feel bad for bestselling authors and artists who sell their work for millions, for whatever toil they may put into their work, whatever their elevated suicide rate (which is clearly endogenous; people aren’t randomly assigned to be writers), they also surely enjoy it a good deal of the time, and even if they didn’t, their work sells for millions. But for many products it is quite obviously true: A certain proportion of roofers, steelworkers, and truck drivers will die doing their jobs. We can either accept that, recognizing that it’s worth it to have roofs, steel, and trucking—and by extension, industrial capitalism, and its whole babies not dying thing—or we can give up on the entire project of human civilization, and go back to hunting and gathering; even if we somehow managed to avoid the direct homicide most hunter-gatherers engage in, far more people would simply die of disease or get eaten by predators.

Of course, we should have safety standards; but the benefits of higher safety must be carefully weighed against the potential costs of inefficiency, unemployment, and poverty. Safety regulations can reduce some real costs and increase others, even if they almost always increase prices. A good balance is struck when real cost is minimized, where any additional regulation would increase inefficiency more than it improves safety.

Actually OSHA are unsung heroes for their excellent performance at striking this balance, just as EPA are unsung heroes for their balance in environmental regulations (and that whole cutting crime in half business). If activists are mad at you for not banning everything bad and business owners are mad at you for not letting them do whatever they want, you’re probably doing it right. Would you rather people saved from fires, or fires prevented by good safety procedures? Would you rather murderers imprisoned, or boys who grow up healthy and never become murderers? If an ounce of prevention is worth a pound of cure, why does everyone love firefighters and hate safety regulators?So let me take this opportunity to say thank you, OSHA and EPA, for doing the jobs of firefighters and police way better than they do, and unlike them, never expecting to be lauded for it.

And now back to our regularly scheduled programming. Markets are supposed to reflect costs in prices, which is why it’s not totally nonsensical to say “cost” when you mean “price”; but in fact they aren’t very good at that, for reasons I’ll get to in a moment.

Value

Value is how much something is worth—not to sell it (that’s the price again), but to use it. One of the core principles of economics is that trade is nonzero-sum, because people can exchange goods that they value differently and thereby make everyone better off. They can’t price them differently—the buyer and the seller must agree upon a price to make the trade. But they can value them differently.

To see how this works, let’s look at a very simple toy model, the simplest essence of trade: Alice likes chocolate ice cream, but all she has is a gallon of vanilla ice cream. Bob likes vanilla ice cream, but all he has is a gallon of chocolate ice cream. So Alice and Bob agree to trade their ice cream, and both of them are happier.

We can measure value in “willingness-to-pay” (WTP), the highest price you’d willingly pay for something. That makes value look more like a price; but there are several reasons we must be careful when we do that. The obvious reason is that WTP is obviously going to vary based on overall inflation; since $5 isn’t worth as much in 2016 as it was in 1956, something with a WTP of $5 in 1956 would have a much higher WTP in 2016. The not-so-obvious reason is that money is worth less to you the more you have, so we also need to take into account the effect of wealth, and the marginal utility of wealth. The more money you have, the more money you’ll be willing to pay in order to get the same amount of real benefit. (This actually creates some very serious market distortions in the presence of high income inequality, which I may make the subject of a post or even a paper at some point.) Similarly there is “willingness-to-accept” (WTA), the lowest price you’d willingly accept for it. In theory these should be equal; in practice, WTA is usually slightly higher than WTP in what’s called endowment effect.

So to make our model a bit more quantitative, we could suppose that Alice values vanilla at $5 per gallon and chocolate at $10 per gallon, while Bob also values vanilla at $5 per gallon but only values chocolate at $4 per gallon. (I’m using these numbers to point out that not all the valuations have to be different for trade to be beneficial, as long as some are.) Therefore, if Alice sells her vanilla ice cream to Bob for $5, both will (just barely) accept that deal; and then Alice can buy chocolate ice cream from Bob for anywhere between $4 and $10 and still make both people better off. Let’s say they agree to also sell for $5, so that no net money is exchanged and it is effectively the same as just trading ice cream for ice cream. In that case, Alice has gained $5 in consumer surplus (her WTP of $10 minus the $5 she paid) while Bob has gained $1 in producer surplus (the $5 he received minus his $4 WTP). The total surplus will be $6 no matter what price they choose, which we can compute directly from Alice’s WTP of $10 minus Bob’s WTA of $4. The price ultimately decides how that total surplus is distributed between the two parties, and in the real world it would very likely be the result of which one is the better negotiator.

The enormous cost of our distorted understanding

(See what I did there?) If markets were perfectly efficient, prices would automatically adjust so that, at the margin, value is equal to price is equal to cost. What I mean by “at the margin” might be clearer with an example: Suppose we’re selling apples. How many apples do you decide to buy? Well, the value of each successive apple to you is lower, the more apples you have (the law of diminishing marginal utility, which unlike most “laws” in economics is actually almost always true). At some point, the value of the next apple will be just barely above what you have to pay for it, so you’ll stop there. By a similar argument, the cost of producing apples increases the more apples you produce (the law of diminishing returns, which is a lot less reliable, more like the Pirate Code), and the producers of apples will keep selling them until the price they can get is only just barely larger than the cost of production. Thus, in the theoretical limit of infinitely-divisible apples and perfect rationality, marginal value = price = marginal cost. In such a world, markets are perfectly efficient and they maximize surplus, which is the difference between value and cost.

But in the real world of course, none of those assumptions are true. No product is infinitely divisible (though the gasoline in a car is obviously a lot more divisible than the car itself). No one is perfectly rational. And worst of all, we’re not measuring value in the same units. As a result, there is basically no reason to think that markets are optimizing anything; their optimization mechanism is setting two things equal that aren’t measured the same way, like trying to achieve thermal equilibrium by matching the temperature of one thing in Celsius to the temperature of other things in Fahrenheit.

An implicit assumption of the above argument that didn’t even seem worth mentioning was that when I set value equal to price and set price equal to cost, I’m setting value equal to cost; transitive property of equality, right? Wrong. The value is equal to the price, as measured by the buyer. The cost is equal to the price, as measured by the seller.

If the buyer and seller have the same marginal utility of wealth, no problem; they are measuring in the same units. But if not, we convert from utility to money and then back to utility, using a different function to convert each time. In the real world, wealth inequality is massive, so it’s wildly implausible that we all have anything close to the same marginal utility of wealth. Maybe that’s close enough if you restrict yourself to middle-class people in the First World; so when a tutoring client pays me, we might really be getting close to setting marginal value equal to marginal cost. But once you include corporations that are owned by billionaires and people who live on $2 per day, there’s simply no way that those price-to-utility conversions are the same at each end. For Bill Gates, a million dollars is a rounding error. For me, it would buy a house, give me more flexible work options, and keep me out of debt, but not radically change the course of my life. For a child on a cocoa farm in Cote d’Ivoire, it could change her life in ways she can probably not even comprehend.

The market distortions created by this are huge; indeed, most of the fundamental flaws in capitalism as we know it are ultimately traceable to this. Why do Americans throw away enough food to feed all the starving children in Africa? Marginal utility of wealth. Why are Silicon Valley programmers driving the prices for homes in San Francisco higher than most Americans will make in their lifetimes? Marginal utility of wealth. Why are the Koch brothers spending more on this year’s elections than the nominal GDP of the Gambia? Marginal utility of wealth. It’s the sort of pattern that once you see it suddenly seems obvious and undeniable, a paradigm shift a bit like the heliocentric model of the solar system. Forget trade barriers, immigration laws, and taxes; the most important market distortions around the world are all created by wealth inequality. Indeed, the wonder is that markets work as well as they do.

The real challenge is what to do about it, how to reduce this huge inequality of wealth and therefore marginal utility of wealth, without giving up entirely on the undeniable successes of free market capitalism. My hope is that once more people fully appreciate the difference between price, cost, and value, this paradigm shift will be much easier to make; and then perhaps we can all work together to find a solution.

Tax incidence revisited, part 4: Surplus and deadweight loss

JDN 2457355

I’ve already mentioned the fact that taxation creates deadweight loss, but in order to understand tax incidence it’s important to appreciate exactly how this works.

Deadweight loss is usually measured in terms of total economic surplus, which is a strange and deeply-flawed measure of value but relatively easy to calculate.

Surplus is based upon the concept of willingness-to-pay; the value of something is determined by the maximum amount of money you would be willing to pay for it.

This is bizarre for a number of reasons, and I think the most important one is that people differ in how much wealth they have, and therefore in their marginal utility of wealth. $1 is worth more to a starving child in Ghana than it is to me, and worth more to me than it is to a hedge fund manager, and worth more to a hedge fund manager than it is to Bill Gates. So when you try to set what something is worth based on how much someone will pay for it, which someone are you using?

People also vary, of course, in how much real value a good has to them: Some people like dark chocolate, some don’t. Some people love spicy foods and others despise them. Some people enjoy watching sports, others would rather read a book. A meal is worth a lot more to you if you haven’t eaten in days than if you just ate half an hour ago. That’s not actually a problem; part of the point of a market economy is to distribute goods to those who value them most. But willingness-to-pay is really the product of two different effects: The real effect, how much utility the good provides you; and the wealth effect, how your level of wealth affects how much you’d pay to get the same amount of utility. By itself, willingness-to-pay has no means of distinguishing these two effects, and actually I think one of the deepest problems with capitalism is that ultimately capitalism has no means of distinguishing these two effects. Products will be sold to the highest bidder, not the person who needs it the most—and that’s why Americans throw away enough food to end world hunger.

But for today, let’s set that aside. Let’s pretend that willingness-to-pay is really a good measure of value. One thing that is really nice about it is that you can read it right off the supply and demand curves.

When you buy something, your consumer surplus is the difference between your willingness-to-pay and how much you actually did pay. If a sandwich is worth $10 to you and you pay $5 to get it, you have received $5 of consumer surplus.

When you sell something, your producer surplus is the difference between how much you were paid and your willingness-to-accept, which is the minimum amount of money you would accept to part with it. If making that sandwich cost you $2 to buy ingredients and $1 worth of your time, your willingness-to-accept would be $3; if you then sell it for $5, you have received $2 of producer surplus.

Total economic surplus is simply the sum of consumer surplus and producer surplus. One of the goals of an efficient market is to maximize total economic surplus.

Let’s return to our previous example, where a 20% tax raised the original wage from $22.50 and thus resulted in an after-tax wage of $18.

Before the tax, the supply and demand curves looked like this:

equilibrium_notax

Consumer surplus is the area below the demand curve, above the price, up to the total number of goods sold. The basic reasoning behind this is that the demand curve gives the willingness-to-pay for each good, which decreases as more goods are sold because of diminishing marginal utility. So what this curve is saying is that the first hour of work was worth $40 to the employer, but each following hour was worth a bit less, until the 10th hour of work was only worth $35. Thus the first hour gave $40-$20 = $20 of surplus, while the 10th hour only gave $35-$20 = $15 of surplus.

Producer surplus is the area above the supply curve, below the price, again up to the total number of goods sold. The reasoning is the same: If the first hour of work cost $5 worth of time but the 10th hour cost $10 worth of time, the first hour provided $20-$5 = $15 in producer surplus, but the 10th hour only provided $20-$10 = $10 in producer surplus.

Imagine drawing a little 1-pixel-wide line straight down from the demand curve to the price for each hour and then adding up all those little lines into the total area under the curve, and similarly drawing little 1-pixel-wide lines straight up from the supply curve.

surplus

The employer was paying $20 * 40 = $800 for an amount of work that they actually valued at $1200 (the total area under the demand curve up to 40 hours), so they benefit by $400. The worker was being paid $800 for an amount of work that they would have been willing to accept $480 to do (the total area under the supply curve up to 40 hours), so they benefit $320. The sum of these is the total surplus $720.

equilibrium_notax_surplus

After the tax, the employer is paying $22.50 * 35 = $787.50, but for an amount of work that they only value at $1093.75, so their new surplus is only $306.25. The worker is receiving $18 * 35 = $630, for an amount of work they’d have been willing to accept $385 to do, so their new surplus is $245. Even when you add back in the government revenue of $4.50 * 35 = $157.50, the total surplus is still only $708.75. What happened to that extra $11.25 of value? It simply disappeared. It’s gone. That’s what we mean by “deadweight loss”. That’s why there is a downside to taxation.

equilibrium_tax_surplus

How large the deadweight loss is depends on the precise shape of the supply and demand curves, specifically on how elastic they are. Remember that elasticity is the proportional change in the quantity sold relative to the change in price. If increasing the price 1% makes you want to buy 2% less, you have a demand elasticity of -2. (Some would just say “2”, but then how do we say it if raising the price makes you want to buy more? The Law of Demand is more like what you’d call a guideline.) If increasing the price 1% makes you want to sell 0.5% more, you have a supply elasticity of 0.5.

If supply and demand are highly elastic, deadweight loss will be large, because even a small tax causes people to stop buying and selling a large amount of goods. If either supply or demand is inelastic, deadweight loss will be small, because people will more or less buy and sell as they always did regardless of the tax.

I’ve filled in the deadweight loss with brown in each of these graphs. They are designed to have the same tax rate, and the same price and quantity sold before the tax.

When supply and demand are elastic, the deadweight loss is large:

equilibrium_elastic_tax_surplus

But when supply and demand are inelastic, the deadweight loss is small:

equilibrium_inelastic_tax_surplus

Notice that despite the original price and the tax rate being the same, the tax revenue is also larger in the case of inelastic supply and demand. (The total surplus is also larger, but it’s generally thought that we don’t have much control over the real value and cost of goods, so we can’t generally make something more inelastic in order to increase total surplus.)

Thus, all other things equal, it is better to tax goods that are inelastic, because this will raise more tax revenue while producing less deadweight loss.

But that’s not all that elasticity does!

At last, the end of our journey approaches: In the next post in this series, I will explain how elasticity affects who actually ends up bearing the burden of the tax.

How do we measure happiness?

JDN 2457028 EST 20:33.

No, really, I’m asking. I strongly encourage my readers to offer in the comments any ideas they have about the measurement of happiness in the real world; this has been a stumbling block in one of my ongoing research projects.

In one sense the measurement of happiness—or more formally utility—is absolutely fundamental to economics; in another it’s something most economists are astonishingly afraid of even trying to do.

The basic question of economics has nothing to do with money, and is really only incidentally related to “scarce resources” or “the production of goods” (though many textbooks will define economics in this way—apparently implying that a post-scarcity economy is not an economy). The basic question of economics is really this: How do we make people happy?

This must always be the goal in any economic decision, and if we lose sight of that fact we can make some truly awful decisions. Other goals may work sometimes, but they inevitably fail: If you conceive of the goal as “maximize GDP”, then you’ll try to do any policy that will increase the amount of production, even if that production comes at the expense of stress, injury, disease, or pollution. (And doesn’t that sound awfully familiar, particularly here in the US? 40% of Americans report their jobs as “very stressful” or “extremely stressful”.) If you were to conceive of the goal as “maximize the amount of money”, you’d print money as fast as possible and end up with hyperinflation and total economic collapse ala Zimbabwe. If you were to conceive of the goal as “maximize human life”, you’d support methods of increasing population to the point where we had a hundred billion people whose lives were barely worth living. Even if you were to conceive of the goal as “save as many lives as possible”, you’d find yourself investing in whatever would extend lifespan even if it meant enormous pain and suffering—which is a major problem in end-of-life care around the world. No, there is one goal and one goal only: Maximize happiness.

I suppose technically it should be “maximize utility”, but those are in fact basically the same thing as long as “happiness” is broadly conceived as eudaimoniathe joy of a life well-lived—and not a narrow concept of just adding up pleasure and subtracting out pain. The goal is not to maximize the quantity of dopamine and endorphins in your brain; the goal is to achieve a world where people are safe from danger, free to express themselves, with friends and family who love them, who participate in a world that is just and peaceful. We do not want merely the illusion of these things—we want to actually have them. So let me be clear that this is what I mean when I say “maximize happiness”.

The challenge, therefore, is how we figure out if we are doing that. Things like money and GDP are easy to measure; but how do you measure happiness?
Early economists like Adam Smith and John Stuart Mill tried to deal with this question, and while they were not very successful I think they deserve credit for recognizing its importance and trying to resolve it. But sometime around the rise of modern neoclassical economics, economists gave up on the project and instead sought a narrower task, to measure preferences.

This is often called technically ordinal utility, as opposed to cardinal utility; but this terminology obscures the fundamental distinction. Cardinal utility is actual utility; ordinal utility is just preferences.

(The notion that cardinal utility is defined “up to a linear transformation” is really an eminently trivial observation, and it shows just how little physics the physics-envious economists really understand. All we’re talking about here is units of measurement—the same distance is 10.0 inches or 25.4 centimeters, so is distance only defined “up to a linear transformation”? It’s sometimes argued that there is no clear zero—like Fahrenheit and Celsius—but actually it’s pretty clear to me that there is: Zero utility is not existing. So there you go, now you have Kelvin.)

Preferences are a bit easier to measure than happiness, but not by as much as most economists seem to think. If you imagine a small number of options, you can just put them in order from most to least preferred and there you go; and we could imagine asking someone to do that, or—the technique of revealed preferenceuse the choices they make to infer their preferences by assuming that when given the choice of X and Y, choosing X means you prefer X to Y.

Like much of neoclassical theory, this sounds good in principle and utterly collapses when applied to the real world. Above all: How many options do you have? It’s not easy to say, but the number is definitely huge—and both of those facts pose serious problems for a theory of preferences.

The fact that it’s not easy to say means that we don’t have a well-defined set of choices; even if Y is theoretically on the table, people might not realize it, or they might not see that it’s better even though it actually is. Much of our cognitive effort in any decision is actually spent narrowing the decision space—when deciding who to date or where to go to college or even what groceries to buy, simply generating a list of viable options involves a great deal of effort and extremely complex computation. If you have a true utility function, you can satisficechoosing the first option that is above a certain threshold—or engage in constrained optimizationchoosing whether to continue searching or accept your current choice based on how good it is. Under preference theory, there is no such “how good it is” and no such thresholds. You either search forever or choose a cutoff arbitrarily.

Even if we could decide how many options there are in any given choice, in order for this to form a complete guide for human behavior we would need an enormous amount of information. Suppose there are 10 different items I could have or not have; then there are 10! = 3.6 million possible preference orderings. If there were 100 items, there would be 100! = 9e157 possible orderings. It won’t do simply to decide on each item whether I’d like to have it or not. Some things are complements: I prefer to have shoes, but I probably prefer to have $100 and no shoes at all rather than $50 and just a left shoe. Other things are substitutes: I generally prefer eating either a bowl of spaghetti or a pizza, rather than both at the same time. No, the combinations matter, and that means that we have an exponentially increasing decision space every time we add a new option. If there really is no more structure to preferences than this, we have an absurd computational task to make even the most basic decisions.

This is in fact most likely why we have happiness in the first place. Happiness did not emerge from a vacuum; it evolved by natural selection. Why make an organism have feelings? Why make it care about things? Wouldn’t it be easier to just hard-code a list of decisions it should make? No, on the contrary, it would be exponentially more complex. Utility exists precisely because it is more efficient for an organism to like or dislike things by certain amounts rather than trying to define arbitrary preference orderings. Adding a new item means assigning it an emotional value and then slotting it in, instead of comparing it to every single other possibility.

To illustrate this: I like Coke more than I like Pepsi. (Let the flame wars begin?) I also like getting massages more than I like being stabbed. (I imagine less controversy on this point.) But the difference in my mind between massages and stabbings is an awful lot larger than the difference between Coke and Pepsi. Yet according to preference theory (“ordinal utility”), that difference is not meaningful; instead I have to say that I prefer the pair “drink Pepsi and get a massage” to the pair “drink Coke and get stabbed”. There’s no such thing as “a little better” or “a lot worse”; there is only what I prefer over what I do not prefer, and since these can be assigned arbitrarily there is an impossible computational task before me to make even the most basic decisions.

Real utility also allows you to make decisions under risk, to decide when it’s worth taking a chance. Is a 50% chance of $100 worth giving up a guaranteed $50? Probably. Is a 50% chance of $10 million worth giving up a guaranteed $5 million? Not for me. Maybe for Bill Gates. How do I make that decision? It’s not about what I prefer—I do in fact prefer $10 million to $5 million. It’s about how much difference there is in terms of my real happiness—$5 million is almost as good as $10 million, but $100 is a lot better than $50. My marginal utility of wealth—as I discussed in my post on progressive taxation—is a lot steeper at $50 than it is at $5 million. There’s actually a way to use revealed preferences under risk to estimate true (“cardinal”) utility, developed by Von Neumann and Morgenstern. In fact they proved a remarkably strong theorem: If you don’t have a cardinal utility function that you’re maximizing, you can’t make rational decisions under risk. (In fact many of our risk decisions clearly aren’t rational, because we aren’t actually maximizing an expected utility; what we’re actually doing is something more like cumulative prospect theory, the leading cognitive economic theory of risk decisions. We overrespond to extreme but improbable events—like lightning strikes and terrorist attacks—and underrespond to moderate but probable events—like heart attacks and car crashes. We play the lottery but still buy health insurance. We fear Ebola—which has never killed a single American—but not influenza—which kills 10,000 Americans every year.)

A lot of economists would argue that it’s “unscientific”—Kenneth Arrow said “impossible”—to assign this sort of cardinal distance between our choices. But assigning distances between preferences is something we do all the time. Amazon.com lets us vote on a 5-star scale, and very few people send in error reports saying that cardinal utility is meaningless and only preference orderings exist. In 2000 I would have said “I like Gore best, Nader is almost as good, and Bush is pretty awful; but of course they’re all a lot better than the Fascist Party.” If we had simply been able to express those feelings on the 2000 ballot according to a range vote, either Nader would have won and the United States would now have a three-party system (and possibly a nationalized banking system!), or Gore would have won and we would be a decade ahead of where we currently are in preventing and mitigating global warming. Either one of these things would benefit millions of people.

This is extremely important because of another thing that Arrow said was “impossible”—namely, “Arrow’s Impossibility Theorem”. It should be called Arrow’s Range Voting Theorem, because simply by restricting preferences to a well-defined utility and allowing people to make range votes according to that utility, we can fulfill all the requirements that are supposedly “impossible”. The theorem doesn’t say—as it is commonly paraphrased—that there is no fair voting system; it says that range voting is the only fair voting system. A better claim is that there is no perfect voting system, which is true if you mean that there is no way to vote strategically that doesn’t accurately reflect your true beliefs. The Myerson-Satterthwaithe Theorem is then the proper theorem to use; if you could design a voting system that would force you to reveal your beliefs, you could design a market auction that would force you to reveal your optimal price. But the least expressive way to vote in a range vote is to pick your favorite and give them 100% while giving everyone else 0%—which is identical to our current plurality vote system. The worst-case scenario in range voting is our current system.

But the fact that utility exists and matters, unfortunately doesn’t tell us how to measure it. The current state-of-the-art in economics is what’s called “willingness-to-pay”, where we arrange (or observe) decisions people make involving money and try to assign dollar values to each of their choices. This is how you get disturbing calculations like “the lives lost due to air pollution are worth $10.2 billion.”

Why are these calculations disturbing? Because they have the whole thing backwards—people aren’t valuable because they are worth money; money is valuable because it helps people. It’s also really bizarre because it has to be adjusted for inflation. Finally—and this is the point that far too few people appreciate—the value of a dollar is not constant across people. Because different people have different marginal utilities of wealth, something that I would only be willing to pay $1000 for, Bill Gates might be willing to pay $1 million for—and a child in Africa might only be willing to pay $10, because that is all he has to spend. This makes the “willingness-to-pay” a basically meaningless concept independent of whose wealth we are spending.

Utility, on the other hand, might differ between people—but, at least in principle, it can still be added up between them on the same scale. The problem is that “in principle” part: How do we actually measure it?

So far, the best I’ve come up with is to borrow from public health policy and use the QALY, or quality-adjusted life year. By asking people macabre questions like “What is the maximum number of years of your life you would give up to not have a severe migraine every day?” (I’d say about 20—that’s where I feel ambivalent. At 10 I definitely would; at 30 I definitely wouldn’t.) or “What chance of total paralysis would you take in order to avoid being paralyzed from the waist down?” (I’d say about 20%.) we assign utility values: 80 years of migraines is worth giving up 20 years to avoid, so chronic migraine is a quality of life factor of 0.75. Total paralysis is 5 times as bad as paralysis from the waist down, so if waist-down paralysis is a quality of life factor of 0.90 then total paralysis is 0.50.

You can probably already see that there are lots of problems: What if people don’t agree? What if due to framing effects the same person gives different answers to slightly different phrasing? Some conditions will directly bias our judgments—depression being the obvious example. How many years of your life would you give up to not be depressed? Suicide means some people say all of them. How well do we really know our preferences on these sorts of decisions, given that most of them are decisions we will never have to make? It’s difficult enough to make the actual decisions in our lives, let alone hypothetical decisions we’ve never encountered.

Another problem is often suggested as well: How do we apply this methodology outside questions of health? Does it really make sense to ask you how many years of your life drinking Coke or driving your car is worth?
Well, actually… it better, because you make that sort of decision all the time. You drive instead of staying home, because you value where you’re going more than the risk of dying in a car accident. You drive instead of walking because getting there on time is worth that additional risk as well. You eat foods you know aren’t good for you because you think the taste is worth the cost. Indeed, most of us aren’t making most of these decisions very well—maybe you shouldn’t actually drive or drink that Coke. But in order to know that, we need to know how many years of your life a Coke is worth.

As a very rough estimate, I figure you can convert from willingness-to-pay to QALY by dividing by your annual consumption spending Say you spend annually about $20,000—pretty typical for a First World individual. Then $1 is worth about 50 microQALY, or about 26 quality-adjusted life-minutes. Now suppose you are in Third World poverty; your consumption might be only $200 a year, so $1 becomes worth 5 milliQALY, or 1.8 quality-adjusted life-days. The very richest individuals might spend as much as $10 million on consumption, so $1 to them is only worth 100 nanoQALY, or 3 quality-adjusted life-seconds.

That’s an extremely rough estimate, of course; it assumes you are in perfect health, all your time is equally valuable and all your purchasing decisions are optimized by purchasing at marginal utility. Don’t take it too literally; based on the above estimate, an hour to you is worth about $2.30, so it would be worth your while to work for even $3 an hour. Here’s a simple correction we should probably make: if only a third of your time is really usable for work, you should expect at least $6.90 an hour—and hey, that’s a little less than the US minimum wage. So I think we’re in the right order of magnitude, but the details have a long way to go.

So let’s hear it, readers: How do you think we can best measure happiness?